Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol
- 25 September 2004
- journal article
- research article
- Published by Wiley in Biotechnology & Bioengineering
- Vol. 88 (2) , 168-175
- https://doi.org/10.1002/bit.20237
Abstract
Paclitaxel (Taxol) is a widely used anticancer isoprenoid produced by the secondary metabolism of yew (Taxus sp.) trees. However, only limited amounts of Taxol or related metabolites (taxoids) can be obtained from the currently available sources. In this work we have taken the first step toward genetically engineering the biosynthesis of taxoids in angiosperms. The first committed step in Taxol biosynthesis is the production of taxadiene from geranylgeranyl diphosphate (GGPP), catalyzed by the plastid‐localized enzyme taxadiene synthase (TXS). A recombinant T. baccata TXS lacking the putative plastid targeting peptide and fused to a C‐terminal histidine (His) tag was shown to be enzymatically active in Escherichia coli. Constitutive production of the full‐length His‐tagged enzyme in Arabidopsis thaliana plants led to the accumulation of taxadiene and concomitant growth retardation and decreased levels of photosynthetic pigment in transgenic plants. Although these phenotypes may derive from a toxic effect of taxadiene, the lower accumulation of endogenous plastid isoprenoid products such as carotenoids and chlorophylls in transgenic plants also suggests that the constitutive production of an active TXS enzyme might alter the balance of the GGPP pool. Induction of transgene expression using a glucocorticoid‐mediated system consistently resulted in a more efficient recruitment of GGPP for the production of taxadiene, which reached levels 30‐fold higher than those in plants constitutively expressing the transgene. This accomplishment illustrates the possibility of engineering the production of taxoids and other GGPP‐derived isoprenoids in crop plants despite the constraints associated with limited knowledge with regard to regulation of GGPP availability.Keywords
Funding Information
- Generalitat de Catalunya (BIO99-0503-C02-01)
- Spanish Ministerio de Educación y Cultura (FEDER-BIO2002-04419-C02-02)
- Generalitat de Catalunya (DURSI) (FEDER-BIO2002-1653, 2001SGR00109)
This publication has 32 references indexed in Scilit:
- Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthaseBiochemical Journal, 2003
- Functional Analysis of the Early Steps of Carotenoid Biosynthesis in TobaccoPlant Physiology, 2002
- Taxol biosynthetic genesPhytochemistry, 2001
- Application of high‐performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoidsThe Plant Journal, 2000
- Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoidsThe Plant Journal, 2000
- ChloroP, a neural network‐based method for predicting chloroplast transit peptides and their cleavage sitesProtein Science, 1999
- A glucocorticoid‐mediated transcriptional induction system in transgenic plantsThe Plant Journal, 1997
- Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathwayThe Plant Journal, 1995
- Biochemistry and Molecular Biology of the Isoprenoid Biosynthetic Pathway in PlantsAnnual Review of Plant Biology, 1995
- High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene productGene, 1989