Age-related changes in composition and mechanical properties of the tunica media of the upper thoracic human aorta.
- 1 January 1983
- journal article
- research article
- Published by Wolters Kluwer Health in Arteriosclerosis: An Official Journal of the American Heart Association, Inc.
- Vol. 3 (1) , 64-76
- https://doi.org/10.1161/01.atv.3.1.64
Abstract
A cylindrical segment, free of complex atherosclerotic lesions, was resected at autopsy from each of 59 descending human thoracic aortas by cutting just below the level of the first pair of intercostal arteries and 35 mm distal to this incision. Each isolated tunica media was defatted and subjected to successive treatment with EDTA-Tris, 5 M guanidine hydrochloride-Tris, 5 M guanidine hydrochloride-Tris-DTE, collagenase and either trypsin or hot alkali. After each extraction or digestion, the dimensions and weight of the segments were measured and the extracted materials were analyzed and quantitated. This allowed the total content of the various components of the tunica media to be assessed by both gravimetric and analytical means. An age-related rise was observed in the total content of the following components: proteins and glycoproteins soluble in chaotropic solvents (ranging from 24 mg/cm in the youngest samples to 46 mg/cm in the oldest) and collagen (38 mg/cm to 69 mg/cm). In contrast, the total content of elastin remained constant at 70 mg/cm at all ages, but its concentration decreased due to the rise in the concentration of the other tissue components as the tunica media thickened with age. It was also noted that with increasing age there was an accumulation of protein(s) which could not be solubilized by extraction with chaotropic agents or with collagenase, but which could be removed by treatment with either trypsin or hot alkali. Mechanical measurements conducted before and after trypsin digestion on samples previously subjected to purification with the first four agents used suggest that this accumulated protein(s) influenced the elastic response of the tissue to the applied stress by increasing the incremental modulus, the breaking stress, and the hysteresis. After the removal of this additional protein(s), the mechanical behavior of the elastin component was found to be identical in all samples, irrespective of age. It is therefore proposed that the morphological changes and the stiffening observed in the aging aortic wall are not due to degradation of its elastin network but to variations in the supramolecular organization of connective tissue components.This publication has 26 references indexed in Scilit:
- A NEW SPECIFIC COLOR REACTION OF HEXURONIC ACIDSPublished by Elsevier ,2021
- THE EFFECT OF AGE ON THE ELASTICITY OF HUMAN ILIAC ARTERIESCanadian Journal of Biochemistry and Physiology, 1959
- Das Volumen, die Volumendehnbarkeit und die Druck-Längen-Beziehungen des gesamten aortalen Windkessels in Abhängigkeit von Alter, Hochdruck und ArterioskleroseKlinische Wochenschrift, 1958
- THE REASON FOR THE SHAPE OF THE DISTENSIBILITY CURVES OF ARTERIESCanadian Journal of Biochemistry and Physiology, 1957
- The estimation of carbohydrates in plant extracts by anthroneBiochemical Journal, 1954
- The structure and chemical characterization of elastic fibers as reveled by elastase and by electron microscopyThe Anatomical Record, 1952
- THE INTERRELATION OF ELASTIC TISSUE AND CALCIUM IN THE GENESIS OF ARTERIOSCLEROSIS1950
- The postmortem elasticity of the adult human aorta its relation to age and to the distribution of intimal atheromas1937
- STUDIES ON THE ELASTIC PROPERTIES OF HUMAN ISOLATED AORTAJournal of Clinical Investigation, 1937
- Über die pathologischen Veränderungen der Arterien der oberen ExtremitätVirchows Archiv, 1926