The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2
- 27 November 2007
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 104 (48) , 18993-18998
- https://doi.org/10.1073/pnas.0709170104
Abstract
Recombination activating gene (RAG) 1 and RAG2 together catalyze V(D)J gene rearrangement in lymphocytes as the first step in the assembly and maturation of antigen receptors. RAG2 contains a plant homeodomain (PHD) near its C terminus (RAG2-PHD) that recognizes histone H3 methylated at lysine 4 (H3K4me) and influences V(D)J recombination. We report here crystal structures of RAG2-PHD alone and complexed with five modified H3 peptides. Two aspects of RAG2-PHD are unique. First, in the absence of the modified peptide, a peptide N-terminal to RAG2-PHD occupies the substrate-binding site, which may reflect an autoregulatory mechanism. Second, in contrast to other H3K4me3-binding PHD domains, RAG2-PHD substitutes a carboxylate that interacts with arginine 2 (R2) with a Tyr, resulting in binding to H3K4me3 that is enhanced rather than inhibited by dimethylation of R2. Five residues involved in histone H3 recognition were found mutated in severe combined immunodeficiency (SCID) patients. Disruption of the RAG2-PHD structure appears to lead to the absence of T and B lymphocytes, whereas failure to bind H3K4me3 is linked to Omenn Syndrome. This work provides a molecular basis for chromatin-dependent gene recombination and presents a single protein domain that simultaneously recognizes two distinct histone modifications, revealing added complexity in the read-out of combinatorial histone modifications.Keywords
This publication has 50 references indexed in Scilit:
- A hypomorphic R229Q Rag2 mouse mutant recapitulates human Omenn syndromeJournal of Clinical Investigation, 2007
- Chromatin Modifications and Their FunctionCell, 2007
- Methylation of Lysine 4 on Histone H3: Intricacy of Writing and Reading a Single Epigenetic MarkPublished by Elsevier ,2007
- Proteome-wide Analysis in Saccharomyces cerevisiae Identifies Several PHD Fingers as Novel Direct and Selective Binding Modules of Histone H3 Methylated at Either Lysine 4 or Lysine 36Journal of Biological Chemistry, 2007
- Structural Basis for the Methylation State-Specific Recognition of Histone H4-K20 by 53BP1 and Crb2 in DNA RepairCell, 2006
- ING2 PHD domain links histone H3 lysine 4 methylation to active gene repressionNature, 2006
- Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2Nature, 2006
- Recognition of Histone H3 Lysine-4 Methylation by the Double Tudor Domain of JMJD2AScience, 2006
- Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27Genes & Development, 2003
- Translating the Histone CodeScience, 2001