Chaos in a linear array of vortices

Abstract
An experimental study of the onset of chaos in a linear array of forced vortices is presented. The vortices are driven by electromagnetic forces in a layer of electrolyte. The system is found to behave like a chain of nonlinearly coupled oscillators, each oscillator being sustained by a pair of vortices. Systems with a small number of vortices exhibit scenarios characterized by a small number of degrees of freedom. Increasing the number of vortices leads to a rapid increase of the complexity of the regimes of transition to chaos. For moderately long systems, quasi-periodicity preceding the onset of chaos and intermittent behaviour is observed.