Monte Carlo simulation and large deviations theory for uniformly recurrent Markov chains

Abstract
Importance sampling is a Monte Carlo simulation technique in which the simulation distribution is different from the true underlying distribution. In order to obtain an unbiased Monte Carlo estimate of the desired parameter, simulated events are weighted to reflect their true relative frequency. In this paper, we consider the estimation via simulation of certain large deviations probabilities for time-homogeneous Markov chains. We first demonstrate that when the simulation distribution is also a homogeneous Markov chain, the estimator variance will vanish exponentially as the sample size n tends to∞. We then prove that the estimator variance is asymptotically minimized by the same exponentially twisted Markov chain which arises in large deviation theory, and furthermore, this optimization is unique among uniformly recurrent homogeneous Markov chain simulation distributions.

This publication has 22 references indexed in Scilit: