Error analysis in acoustic elastography. II. Strain estimation and SNR analysis
- 1 February 1997
- journal article
- Published by Acoustical Society of America (ASA) in The Journal of the Acoustical Society of America
- Vol. 101 (2) , 1147-1154
- https://doi.org/10.1121/1.418019
Abstract
Accurate displacement estimates are required to obtain high-quality strain estimates in elastography. In this paper the strain variance is derived from the statistical properties of the displacement field to define a point signal-to-noise ratio for elastography (SNR0). Displacements caused by compressional forces applied along the axis of the transducer beam are modeled by scaling and shifting the axial reflectivity profile of the tissue. The strain variance is given as a function of essential experimental parameters, such as the amount of tissue compression, echo waveform window length, and the amount of window overlap. SNR0 is defined in terms of applied compression and strain variance and normalized by the input signal-to-noise ratio (SNRi) for echo signals, to formulate the performance metric SNR0/SNRi. This quantity characterizes the noise properties, dynamic range, and sensitivity of strain images based on the spatial resolution requirements. The results indicate that low noise, high sensitivity, and limited dynamic range strain images are obtained for high-frequency bandpass signals when the applied strain is small. For large strains, however, one strategy for low-noise strain imaging employs base-band signals to obtain images with large dynamic range but limited peak sensitivity and noise figure. A better strategy includes companding, which eliminates the average strain in the echo signal before cross-correlation to reduce the dynamic range requirement and increase peak sensitivity for strain estimates.Keywords
This publication has 13 references indexed in Scilit:
- Error analysis in acoustic elastography. I. Displacement estimationThe Journal of the Acoustical Society of America, 1997
- Tissue elasticity reconstruction using linear perturbation methodIEEE Transactions on Medical Imaging, 1996
- Deformation models and correlation analysis in elastographyThe Journal of the Acoustical Society of America, 1996
- Tissue elasticity reconstruction based on ultrasonic displacement and strain imagesIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995
- Estimation of shear modulus distribution in soft tissue from strain distributionIEEE Transactions on Biomedical Engineering, 1995
- Effects of uncompensated relative time companding on a broad-band cross correlatorIEEE Transactions on Acoustics, Speech, and Signal Processing, 1985
- Comparison of the deskewed short-time correlator and the maximum likelihood correlatorIEEE Transactions on Acoustics, Speech, and Signal Processing, 1984
- Correlator compensation requirements for passive time-delay estimation with moving source or receiversIEEE Transactions on Acoustics, Speech, and Signal Processing, 1980
- Estimation of time delay in the presence of source or receiver motionThe Journal of the Acoustical Society of America, 1977
- Correlation of Signals Having a Linear DelayThe Journal of the Acoustical Society of America, 1963