Peripheral Myelin Protein 22 Is in Complex with α6β4 Integrin, and Its Absence Alters the Schwann Cell Basal Lamina

Abstract
Peripheral myelin protein 22 (PMP22) is a tetraspan membrane glycoprotein, the misexpression of which is associated with hereditary demyelinating neuropathies. Myelinating Schwann cells (SCs) produce the highest levels of PMP22, yet the function of the protein in peripheral nerve biology is unresolved. To investigate the potential roles of PMP22, we engineered a novel knock-out (−/−) mouse line by replacing the first two coding exons ofpmp22with thelacZreporter. PMP22-deficient mice show strong β-galactosidase reactivity in peripheral nerves, cartilage, intestines, and lungs, whereas phenotypically they display the characteristics of tomaculous neuropathy. In the absence of PMP22, myelination of peripheral nerves is delayed, and numerous axon–SC profiles show loose basal lamina, suggesting altered interactions of the glial cells with the extracellular matrix. The levels of β4 integrin, a molecule involved in the linkage between SCs and the basal lamina, are severely reduced in nerves of PMP22-deficient mice. During early stages of myelination, PMP22 and β4 integrin are coexpressed at the cell surface and can be coimmunoprecipitated together with laminin and α6 integrin. In agreement, in clone A colonic carcinoma cells, epitope-tagged PMP22 forms a complex with β4 integrin. Together, these data indicate that PMP22 is a binding partner in the integrin/laminin complex and is involved in mediating the interaction of SCs with the extracellular environment.