Small-angle neutron scattering characterization of processing/microstructure relationships in the sintering of crystalline and glassy ceramics

Abstract
Small-angle neutron scattering measurements were used to examine the pore microstructure evolution of glassy silica and polycrystalline alpha-alumina as a function of sintering. It was shown that the two major sintering mechanisms, viscous flow and surface and volume diffusion, lead to very different microstructure evolution signatures in terms of the average pore size as a function of density. However, with respect to topology, the evolution of the porosity per unit surface area as a function of density is remarkably similar in the two systems.