Deterministic Random Walks on the Two-Dimensional Grid

Abstract
Jim Propp's rotor router model is a deterministic analogue of a random walk on a graph. Instead of distributing chips randomly, each vertex serves its neighbors in a fixed order. We analyze the difference between Propp machine and random walk on the infinite two-dimensional grid. It is known that, apart from a technicality, independent of the starting configuration, at each time, the number of chips on each vertex in the Propp model deviates from the expected number of chips in the random walk model by at most a constant. We show that this constant is approximately 7.8, if all vertices serve their neighbors in clockwise or counterclockwise order and 7.3 otherwise. This result in particular shows that the order in which the neighbors are served makes a difference. Our analysis also reveals a number of further unexpected properties of the two-dimensional Propp machine.
All Related Versions

This publication has 0 references indexed in Scilit: