Abstract
Biological systems exhibit heterogeneity at many different levels, leading to the expectation of multiple relaxation time components for water protons in tissue samples. Traditional methods which fit the relaxation data to an a priori number of discrete components are open to observer bias in their interpretation of this data, and moreover, are intutively less realistic for heterogeneous systems than methods which produce continuous relaxation time distributions. Previous validations of continuous distribution techniques have been made on simulated data assuming uniform Gaussian noise. In the current work we have investigated the ability of one particular linear inverse theory technique to reproduce known relaxation time distributions from the data on a controllable model system. Furthermore, using the experience gained on the model system, we have applied this same technique to the analysis of in vitro relaxation time measurements on excised brain tissue and found for water protons in white matter, four reproducible components for the transverse relaxation, whereas gray matter gave rise to only two. The lougitudinal relaxation displayed only one component in either white matter or gray matter. © 1991 Academic Press, Inc.

This publication has 38 references indexed in Scilit: