Morphometry of spine‐free nonpyramidal neurons in rabbit auditory cortex

Abstract
A study of the morphometry and laminar distribution of spine-free nonpyramidal neurons in electrophysiologically verified primary auditory cortex was carried out in adult rabbits. By using image-combining computer microscopy, the locations of all impregnated neurons in 300-μm Golgi-Cox Nissl sections through the auditory cortex were determined. Spine-free non-pyramidal neurons constitute nearly 72% of the nonpyramidal neurons present. They are distributed in a band extending from 450 to 750 μm beneath the pial surface corresponding to laminae III and IV. A combination of dendritic stick, Fourier, and statistical analyses revealed a highly significant spatial orientation of their dendrite systems along a vertical axis parallel to the apical dendrites of pyramidal neurons. A significant tangential orientation of dendrites along a dorsal-ventral axis was also found. A radial analysis of the dendrite systems revealed that the pronounced vertical orientation of spine-free nonpyramidal neurons is due to (1) directed dendritic growth along the vertical axis, (2) decreased branching and rapid termination of tangentially oriented dendrites, and (3) increased branching of vertically growing dendrites. The radial analysis also revealed that the longest branches are those directed toward the white matter.