Rotational-Echo Double-Resonance NMR Distance Measurements for the Tubulin-Bound Paclitaxel Conformation

Abstract
The important anticancer drug Taxol (paclitaxel, PTX) owes its unique activity to its ability to bind to tubulin in a stoichiometric ratio and promote its assembly into microtubules. The conformation of the microtubule-bound drug has been the focus of numerous research efforts, since the inability of polymerized tubulin to form crystals precludes structure proof by X-ray crystallography. Likewise, although the α,β-tubulin dimer structure has been solved by electron crystallography, the 3.7 Å resolution is too low to permit direct determination of either ligand conformation or binding pose. In this article, we present experimental results from 2H{19F} REDOR NMR that provide direct confirmation that paclitaxel adopts a T-shaped conformation when it is bound to tubulin.