Neuromuscular Control of Posture in the Infant and Child

Abstract
This study explored the effects of vision and maturation on the characteristics of neuromuscular responses underlying balance control in both seated and standing children of five age groups (3½–5 months, 8–14 months, 2–3 years, 4–6 years, and 7–10 years). A platform was used to unexpectedly disturb the child’s balance in the anterior or posterior direction. Responses of the leg, trunk, and neck muscles were recorded using surface electromyograms. Vision was not required for the activation of these responses in any of the age groups tested. However, comparison of muscle response latencies of standing children to posterior platform translation in the two visual conditions showed a significant reduction in latency for neck flexors in the 2- to 3-year-olds with vision removed and an increase in the total number of monosynaptic reflexes. No reduction in latency was found in the older age groups. The hypothesis of a shift from an early long latency visual dominance to a shorter latency proprioceptive one during childhood is discussed. Postural control showed a cephalo-caudal developmental gradient with postural responses appearing first in the neck, then trunk, and finally, legs, as children developed from 3 to 14 months of age. A wide variety of response patterns was seen in the 3- to 5-month-olds, indicating that postural responses are not functional prior to experience with stabilizing the center of mass.