CD4+FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β–dependent manner
Top Cited Papers
Open Access
- 18 August 2008
- journal article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 205 (9) , 1975-1981
- https://doi.org/10.1084/jem.20080308
Abstract
CD4(+)FoxP3(+) regulatory T (T reg) cells comprise a separate lineage of T cells that are essential for maintaining immunological tolerance to self. The molecular mechanism(s) by which T reg cells mediate their suppressive effects remains poorly understood. One molecule that has been extensively studied in T reg cell suppression is transforming growth factor (TGF)-beta, but its importance remains controversial. We found that TGF-beta complexed to latency-associated peptide (LAP) is expressed on the cell surface of activated but not resting T reg cells. T reg cell LAP-TGF-beta plays an important role in the suppression of the proliferation of activated T cells, but it is not required for the suppression of naive T cell activation. More importantly, T reg cell-derived TGF-beta could generate de novo CD4(+)FoxP3(+) T cells in vitro from naive precursors in a cell contact-dependent, antigen-presenting cell-independent and alpha(V) integrin-independent manner. The newly induced CD4(+)FoxP3(+) T cells are suppressive both in vitro and in vivo. Transfer of activated antigen-specific T reg cells with naive antigen-specific responder T cells to normal recipients, followed by immunization, also results in induction of FoxP3 expression in the responder cells. T reg cell-mediated generation of functional CD4(+)FoxP3(+) cells via this TGF-beta-dependent pathway may represent a major mechanism as to how T reg cells maintain tolerance and expand their suppressive abilities.Keywords
This publication has 31 references indexed in Scilit:
- TGF‐β1 production by CD4+CD25+ regulatory T cells is not essential for suppression of intestinal inflammationEuropean Journal of Immunology, 2005
- Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3 The Journal of Experimental Medicine, 2003
- An essential role for Scurfin in CD4+CD25+ T regulatory cellsNature Immunology, 2003
- Foxp3 programs the development and function of CD4+CD25+ regulatory T cellsNature Immunology, 2003
- Control of Regulatory T Cell Development by the Transcription Factor Foxp3Science, 2003
- Human CD4+CD25+ Regulatory, Contact-dependent T Cells Induce Interleukin 10–producing, Contact-independent Type 1-like Regulatory T CellsThe Journal of Experimental Medicine, 2002
- CD4+CD25+ Regulatory T Cells Can Mediate Suppressor Function in the Absence of Transforming Growth Factor β1 Production and ResponsivenessThe Journal of Experimental Medicine, 2002
- Infectious ToleranceThe Journal of Experimental Medicine, 2002
- Cell Contact–Dependent Immunosuppression by Cd4+Cd25+Regulatory T Cells Is Mediated by Cell Surface–Bound Transforming Growth Factor βThe Journal of Experimental Medicine, 2001
- The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3Nature Genetics, 2001