JNK-deficiency enhanced oncolytic vaccinia virus replication and blocked activation of double-stranded RNA-dependent protein kinase
- 6 June 2008
- journal article
- research article
- Published by Springer Nature in Cancer Gene Therapy
- Vol. 15 (9) , 616-624
- https://doi.org/10.1038/cgt.2008.32
Abstract
Vaccinia virus has recently been used as an expression vector for gene delivery and an oncolytic agent for cancer therapy. Although it has been established that interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) and RNase L interfere with viral replication, little else is known about the other host factors that might affect viral replication and virus-mediated host cell killing. In this study, we evaluated the roles of c-Jun NH2-terminal kinase (JNK) in oncolytic vaccinia virus replication and vaccinia virus-mediated host cell killing. We found that JNK knockout mouse embryonic fibroblasts (MEFs) were more susceptible to oncolytic vaccinia virus infection than wild-type MEFs. Moreover, viral replication and the production of infectious viral progeny were up to 100-fold greater in JNK-deficient MEFs than in wild-type MEFs. A similar result was observed for wild-type vaccinia virus. The increased killing of infected cells and the production of viral progeny was also observed in wild-type MEFs that had been treated with JNK inhibitors and in human colon cancer cells that had been transfected with dominant-negative JNK constructs. Moreover, testing on several human lung cancer cell lines and HeLa cells showed an inverse correlation between levels of JNK expression and susceptibility to oncolytic vaccinia virus. Our study also revealed that oncolytic virus infection-mediated PKR activation was blocked or diminished in JNK-deficient MEFs. The adenovirus-mediated ectopic expression of human PKR in JNK-deficient MEFs reduced vaccinia virus replication to the levels observed in wild-type MEFs, indicating that JNK is required for vaccinia virus to efficiently activate PKR. Our results demonstrated that the cellular status of JNK function can dramatically affect oncolytic vaccinia virus replication and vaccinia virus-mediated host cell killing. This finding may enable further improvements in oncolytic virotherapy using vaccinia virus.Keywords
This publication has 45 references indexed in Scilit:
- Rotavirus Activates JNK and p38 Signaling Pathways in Intestinal Cells, Leading to AP-1-Driven Transcriptional Responses and Enhanced Virus ReplicationJournal of Virology, 2006
- Molecular basis for PKR activation by PACT or dsRNAProceedings of the National Academy of Sciences, 2006
- Phase I clinical trial safety of DNA- and modified virus Ankara-vectored human immunodeficiency virus type 1 (HIV-1) vaccines administered alone and in a prime-boost regime to healthy HIV-1-uninfected volunteersVaccine, 2006
- Activation of c‐Jun NH2‐terminal kinase is required for gemcitabine's cytotoxic effect in human lung cancer H1299 cellsFEBS Letters, 2005
- Identification of a Novel Synthetic Thiazolidin Compound Capable of Inducing c-Jun NH2-Terminal Kinase–Dependent Apoptosis in Human Colon Cancer CellsCancer Research, 2005
- c-Jun N-Terminal Protein Kinase 1 (JNK1), but Not JNK2, Is Essential for Tumor Necrosis Factor Alpha-Induced c-Jun Kinase Activation and ApoptosisMolecular and Cellular Biology, 2004
- JNK Regulates the Release of Proapoptotic Mitochondrial Factors in Reovirus-Infected CellsJournal of Virology, 2004
- Vaccinia as a vector for gene deliveryExpert Opinion on Biological Therapy, 2004
- PKR; a sentinel kinase for cellular stressOncogene, 1999
- Opposing Effects of ERK and JNK-p38 MAP Kinases on ApoptosisScience, 1995