RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors
- 25 March 2008
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 105 (12) , 4667-4672
- https://doi.org/10.1073/pnas.0800006105
Abstract
Multiple peptide resistance (MprF) virulence factors control cellular permeability to cationic antibiotics by aminoacylating inner membrane lipids. It has been shown previously that one class of MprF can use Lys-tRNA(Lys) to modify phosphatidylglycerol (PG), but the mechanism of recognition and possible role of other MprFs are unknown. Here, we used an in vitro reconstituted lipid aminoacylation system to investigate the two phylogenetically distinct MprF paralogs (MprF1 and MprF2) found in the bacterial pathogen Clostridium perfringens. Although both forms of MprF aminoacylate PG, they do so with different amino acids; MprF1 is specific for Ala-tRNA(Ala), and MprF2 utilizes Lys-tRNA(Lys). This provides a mechanism by which the cell can fine tune the charge of the inner membrane by using the neutral amino acid alanine, potentially providing resistance to a broader range of antibiotics than offered by lysine modification alone. Mutation of tRNA(Ala) and tRNA(Lys) had little effect on either MprF activity, indicating that the aminoacyl moiety is the primary determinant for aminoacyl-tRNA recognition. The lack of discrimination of the tRNA is consistent with the role of MprF as a virulence factor, because species-specific differences in tRNA sequence would not present a barrier to horizontal gene transfer. Taken together, our findings reveal how the MprF proteins provide a potent virulence mechanism by which pathogens can readily acquire resistance to chemically diverse antibiotics.Keywords
This publication has 48 references indexed in Scilit:
- Monitoring Lys-tRNALys phosphatidylglycerol transferase activityMethods, 2008
- Idiosyncratic features in tRNAs participating in bacterial cell wall synthesisNucleic Acids Research, 2007
- Protein-based peptide-bond formation by aminoacyl-tRNA protein transferaseNature, 2007
- Genetic Changes That Correlate with Reduced Susceptibility to Daptomycin in Staphylococcus aureusAntimicrobial Agents and Chemotherapy, 2006
- Divergence in Noncognate Amino Acid Recognition between Class I and Class II Lysyl-tRNA SynthetasesPublished by Elsevier ,2004
- Common Location of Determinants in Initiator Transfer RNAs for Initiator-Elongator Discrimination in Bacteria and in EukaryotesPublished by Elsevier ,2003
- tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetasesJournal of Molecular Biology, 1998
- Over-production of Proteins inEscherichia coli: Mutant Hosts that Allow Synthesis of some Membrane Proteins and Globular Proteins at High LevelsJournal of Molecular Biology, 1996
- Novel Species of tRNANature, 1971
- A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATIONCanadian Journal of Biochemistry and Physiology, 1959