Green Fluorescent Protein-Glucocorticoid Receptor Knockin Mice Reveal Dynamic Receptor Modulation During Thymocyte Development

Abstract
To delineate the cellular targets and mechanisms by which glucocorticoids (GCs) exert their actions, we generated mice in which a green fluorescent protein (GFP)-GC receptor (GR) fusion gene is knocked into the GR locus. In these mice, the GFP-GR protein, which is functionally indistinguishable from endogenous GR, allows the tracking and quantitation of GR expression in single living cells. In GFP-GR thymus, GR expression is uniform among embryonic thymocyte subpopulations but gradually matures over a 3-wk period after birth. In the adult, GR is specifically induced to high levels in CD25+CD4CD8 thymocytes and returns to basal levels in CD4+CD8+ thymocytes of wild-type and positively selecting female HY TCR-transgenic mice, but not negatively selecting male HY TCR-transgenic mice. In GFP-GR/recombinase-activating gene 2−/− thymocytes, GR expression is down-regulated by pre-TCR complex stimulation. Additionally, relative GR expression is dissociated from GC-induced apoptosis in vivo. Results from these studies define differential GR expression throughout ontogeny, suggest pre-TCR activation as a specific mechanism of GR down-regulation, define immature CD8+ thymocytes as novel apoptosis-sensitive GC targets, and separate receptor abundance from susceptibility to apoptosis across thymocyte populations.