Energy Extraction Optimization In Lasers
- 24 November 1975
- proceedings article
- Published by SPIE-Intl Soc Optical Eng
- Vol. 69, 135-148
- https://doi.org/10.1117/12.954557
Abstract
A simple process for optimizing laser efficiency is presented. While the basic ideas are generally applicable, most of the graphs and equations apply specifically to four level, solid state, Q-switched devices. Efficiency, in the form of a conservation of energy equation, connects output to input through a series of factors. These are related to the system parameters and optimization curves are given. The conservation of energy equation separates naturally into two parts, the pumping and lasing phases. The latter is considered first, in terms of rate equation solutions presented on a P-N diagram. Energy stored in the rod, fluorescence and output energy are related to mirror reflectivity R,resonator losses, and rod constants. Q-switched pulse length and allowed power densities in the resonator are related to the optimum R. Next, pumping efficiency is considered. After a brief discussion of pump head efficiency, the relationships between lamp output and circuit and lamp parameters are given. Based on recently published work on arc expansion dynamics, the energy delivered, charge, voltage and spectral factors are discussed. Finally, a curve of the pumping fluorescence factor is found and the overall optimization procedure is summarized.Keywords
This publication has 0 references indexed in Scilit: