Muonic x-ray study of the even Os nuclei

Abstract
Precision measurements have been made of the muonic x-ray spectra of the transitional nuclei Os186,188,190,192. Equivalent Barrett radii and isotope shifts have been determined, as have isomer shifts of the first excited 2+ states. These results are compared with other experiments and with theoretical calculations. The systematics of isotope shifts in the deformed nuclei are also discussed. Generalized E2 moments of the charge distribution have been extracted in a nearly model-independent way and conventional electromagnetic moments have been deduced by assuming a specific transition charge density model. The latter are in good agreement with recent calculations of both the interacting boson approximation and the boson expansion theory. However, a serious discrepancy in the values of the quadrupole moments determined from the muonic and Coulomb excitation experiments is apparent. The model dependence of the muonic results (including the effect of a triaxial model charge distribution) is explored as a possible cause of the discrepancy; however, no effect large enough to explain the discrepancy is found. Furthermore, no feature of the muonic spectra was found which could be used to distinguish between a triaxial and an axially symmetric charge distribution.