Protective Immunity Induced by DNA-library Immunization against an Intracellular Bacterial Infection

Abstract
DNA-based immunization has shown to be a viable alternative approach to induce protective immunity against Brucella abortus infection. However, the use of a unique gene may not be sufficient to induce full protection. Therefore, a new strategy based on library immunization has been described to improve the level of protection against different pathogens and to identify new protective genes. In the present study, a B. abortus library was subcloned into the mammalian expression vector pCMV-Ubi. This plasmid was designed to create a fusion between the gene of interest with ubiquitin. The analysis of this Brucella-library showed approximately 72% of clones containing inserts with an average size of 500–2000 bp. Further, homology searches were performed using the BLASTn program, and all sequenced clones showed homology with Brucella genes, as expected. BALB/c mice immunised intramuscularly with the Brucella genomic expression library showed a strong specific total IgG antibody response to a Brucella protein extract, with production of IgG1 and IgG2a isotypes. Regarding cellular immunity, high levels of IFN-γ and no IL-4 were detected in primed mouse splenocytes and partial protection against infection was reached in animals vaccinated with the Brucella library compared to the control group.

This publication has 19 references indexed in Scilit: