Calcium-activated potassium channels: Regulation by calcium
- 1 August 1991
- journal article
- review article
- Published by Springer Nature in Journal of Bioenergetics and Biomembranes
- Vol. 23 (4) , 537-560
- https://doi.org/10.1007/bf00785810
Abstract
A wide variety of calcium-activated K channels has been described and can be conveniently separated into three classes based on differences in single-channel conductance, voltage dependence of channel opening, and sensitivity to blockers. Large-conductance calcium-activated K channels typically require micromolar concentrations of calcium to open, and their sensitivity to calcium increases with membrane depolarization, suggesting that they may be involved in repolarization events. Small-conductance calcium-activated K channels are generally more sensitive to calcium at negative membrane potentials, but their sensitivity to calcium is independent of membrane potential, suggesting that they may be involved in regulating membrane properties near the resting potential. Intermediate-conductance calcium-activated K channels are a loosely defined group, where membership is determined because a channel does not fit in either of the other two groups. Within each broad group, variations in calcium sensitivity and single-channel conductance have been observed, suggesting that there may be families of closely related calcium-activated K channels. Kinetic studies of the gating of calcium-activated potassium channels have revealed some basic features of the mechanisms involved in activation of these channels by calcium, including the number of calcium ions participating in channel opening, the number of major conformations of the channels involved in the gating process, and the number of transition pathways between open and closed states. Methods of analysis have been developed that may allow identification of models that give accurate descriptions of the gating of these channels. Although such kinetic models are likely to be oversimplifications of the behavior of a large macromolecule, these models may provide some insight into the mechanisms that control the gating of the channel, and are subject to falsification by new data.Keywords
This publication has 106 references indexed in Scilit:
- Calcium-dependent potassium channel inParamecium studied under patch clampThe Journal of Membrane Biology, 1989
- Kinetics of voltage- and Ca2+ activation and Ba2+ blockade of a large-conductance K+ channel fromNecturus enterocytesThe Journal of Membrane Biology, 1988
- Calcium-activated potassium channelsTrends in Neurosciences, 1987
- Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayersThe Journal of Membrane Biology, 1985
- High-conductance K+ channel in pancreatic islet cells can be activated and inactivated by internal calciumThe Journal of Membrane Biology, 1985
- Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscleNature, 1985
- The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functionsBiochemical and Biophysical Research Communications, 1984
- Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle.Proceedings of the National Academy of Sciences, 1982
- Single channel recordings of Ca2+-activated K+ currents in rat muscle cell cultureNature, 1981
- Ca-dependent K channels with large unitary conductance in chromaffin cell membranesNature, 1981