Texture optimization for example-based synthesis

Abstract
We present a novel technique for texture synthesis using optimization. We define a Markov Random Field (MRF)-based similarity metric for measuring the quality of synthesized texture with respect to a given input sample. This allows us to formulate the synthesis problem as minimization of an energy function, which is optimized using an Expectation Maximization (EM)-like algorithm. In contrast to most example-based techniques that do region-growing, ours is a joint optimization approach that progressively refines the entire texture. Additionally, our approach is ideally suited to allow for controllable synthesis of textures. Specifically, we demonstrate controllability by animating image textures using flow fields. We allow for general two-dimensional flow fields that may dynamically change over time. Applications of this technique include dynamic texturing of fluid animations and texture-based flow visualization.

This publication has 23 references indexed in Scilit: