Comparison of effects of diabetes mellitus on an EDHF-dependent and an EDHF-independent artery

Abstract
The hypothesis tested in this study is that diabetes has a different impact on an artery in which endothelium-dependent responses derive from both nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) compared with responses in which NO predominates and EDHF is absent. The streptozotocin-treated rat model of diabetes was used, and the arteries were mounted on a wire myograph. In mesenteric arteries depolarized and constricted with phenylephrine, acetylcholine evoked hyperpolarization (31 ± 2 mV) and complete relaxation; these responses were attributed to EDHF and NO. In femoral arteries, acetylcholine evoked a small, NO-mediated hyperpolarization (5 ± 1 mV) and incomplete relaxation. Bradykinin evoked NO-dependent responses in mesenteric arteries. Whereas diabetes significantly impaired the EDHF-dependent hyperpolarization and relaxation in mesenteric arteries, NO-dependent responses in femoral and mesenteric arteries were preserved. 1-Ethyl-2-benzimidazolinone evoked hyperpolarization and relaxation in mesenteric arteries, and this was impaired in diabetes. In conclusion, NO-dependent responses are preserved in diabetes, whereas endothelial responses-dependent upon EDHF appear to be impaired. The putative channels responsible for mediating the EDHF response may be altered in diabetes.