Multibondic Cluster Algorithm for Monte Carlo Simulations of First-Order Phase Transitions

Abstract
Inspired by the multicanonical approach to simulations of first-order phase transitions we propose for $q$-state Potts models a combination of cluster updates with reweighting of the bond configurations in the Fortuin-Kastelein-Swendsen-Wang representation of this model. Numerical tests for the two-dimensional models with $q=7, 10$ and $20$ show that the autocorrelation times of this algorithm grow with the system size $V$ as $\tau \propto V^\alpha$, where the exponent takes the optimal random walk value of $\alpha \approx 1$.

This publication has 0 references indexed in Scilit: