Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks

Abstract
A system for Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) is under development at The University of Arizona. The current core of this system is an adaptive Artificial Neural Network (ANN) model that estimates rainfall rates using infrared satellite imagery and ground-surface information. The model was initially calibrated over the Japanese Islands using remotely sensed infrared data collected by the Geostationary Meteorological Satellite (GMS) and ground-based data collected by the Automated Meteorological Data Acquisition System (AMeDAS). The model was then validated for both the Japanese Islands (using GMS and AMeDAS data) and the Florida peninsula (using GOES-8 and NEXRAD data). An adaptive procedure is used to recursively update the network parameters when ground-based data are available. This feature dramatically improves the estimation performance in response to the diverse precipitation characteristics of different geographical regio... Abstract A system for Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) is under development at The University of Arizona. The current core of this system is an adaptive Artificial Neural Network (ANN) model that estimates rainfall rates using infrared satellite imagery and ground-surface information. The model was initially calibrated over the Japanese Islands using remotely sensed infrared data collected by the Geostationary Meteorological Satellite (GMS) and ground-based data collected by the Automated Meteorological Data Acquisition System (AMeDAS). The model was then validated for both the Japanese Islands (using GMS and AMeDAS data) and the Florida peninsula (using GOES-8 and NEXRAD data). An adaptive procedure is used to recursively update the network parameters when ground-based data are available. This feature dramatically improves the estimation performance in response to the diverse precipitation characteristics of different geographical regio...

This publication has 0 references indexed in Scilit: