The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping
- 1 May 1992
- journal article
- Published by Elsevier in Physica D: Nonlinear Phenomena
- Vol. 56 (2-3) , 253-269
- https://doi.org/10.1016/0167-2789(92)90028-l
Abstract
No abstract availableThis publication has 10 references indexed in Scilit:
- Invariant curves for area-preserving twist maps far from integrableJournal of Statistical Physics, 1991
- The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zonesIcarus, 1990
- Inégalités « a priori » pour des tores lagrangiens invariants par des difféomorphismes symplectiquesPublications mathématiques de l'IHÉS, 1989
- Anomalous scaling laws in multifractal objectsPhysics Reports, 1987
- An obstruction method for the destruction of invariant curvesPhysica D: Nonlinear Phenomena, 1987
- Converse KAM: Theory and practiceCommunications in Mathematical Physics, 1985
- The Lyapunov characteristic exponents-applications to celestial mechanicsCelestial Mechanics and Dynamical Astronomy, 1984
- Non-existence of invariant circlesErgodic Theory and Dynamical Systems, 1984
- A method for determining a stochastic transitionJournal of Mathematical Physics, 1979
- A universal instability of many-dimensional oscillator systemsPhysics Reports, 1979