Abstract
Skin Langerhans cells (LC) are antigen-presenting cells capable of expressing MHC class I and class II molecules on the plasma membrane. This molecular activity was reviewed to combine the knowledge of peptide presentation by MHC and HLA class I and class II molecules to prime CD8+ cytotoxic T cells (CTLs) and CD4+ T helper cells, respectively. The possible utilization of the skin dendritic cells for the development of antiviral CTLs and antibodies by synthetic peptides modeled according to the motifs of peptides that naturally interact with the peptide binding grooves of the various HLA haplotypes is discussed and evaluated. It may be possible that the introduction of synthetic viral peptides with motifs to fit the HLA class I haplotypes of a human population to the skin dendritic cells will prime selectively the cellular or the humoral immune responses. This approach may provide a new vaccination technique that applies synthetic virus peptides as vaccines for the immunization of humans. The neuropeptide CGRP interacts with LC and modulates antigen presentation.