Freak Waves in Random Oceanic Sea States

Abstract
Freak waves are very large, rare events in a random ocean wave train. Here we study the numerical generation of freak waves in a random sea state characterized by the JONSWAP power spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schroedinger (NLS) equation. We identify two parameters in the power spectrum that control the nonlinear dynamics: the Phillips parameter $\alpha$ and the enhancement coefficient $\gamma$. We discuss how freak waves in a random sea state are more likely to occur for large values of $\alpha$ and $\gamma$. Our results are supported by extensive numerical simulations of the NLS equation with random initial conditions. Comparison with linear simulations are also reported.

This publication has 0 references indexed in Scilit: