Networks and epidemic models
Top Cited Papers
- 20 June 2005
- journal article
- review article
- Published by The Royal Society in Journal of The Royal Society Interface
- Vol. 2 (4) , 295-307
- https://doi.org/10.1098/rsif.2005.0051
Abstract
Networks and the epidemiology of directly transmitted infectious diseases are fundamentally linked. The foundations of epidemiology and early epidemiological models were based on population wide random-mixing, but in practice each individual has a finite set of contacts to whom they can pass infection; the ensemble of all such contacts forms a ‘mixing network’. Knowledge of the structure of the network allows models to compute the epidemic dynamics at the population scale from the individual-level behaviour of infections. Therefore, characteristics of mixing networks—and how these deviate from the random-mixing norm—have become important applied concerns that may enhance the understanding and prediction of epidemic patterns and intervention measures.Here, we review the basis of epidemiological theory (based on random-mixing models) and network theory (based on work from the social sciences and graph theory). We then describe a variety of methods that allow the mixing network, or an approximation to the network, to be ascertained. It is often the case that time and resources limit our ability to accurately find all connections within a network, and hence a generic understanding of the relationship between network structure and disease dynamics is needed. Therefore, we review some of the variety of idealized network types and approximation techniques that have been utilized to elucidate this link. Finally, we look to the future to suggest how the two fields of network theory and epidemiological modelling can deliver an improved understanding of disease dynamics and better public health through effective disease control.Keywords
This publication has 95 references indexed in Scilit:
- Network theory and SARS: predicting outbreak diversityJournal of Theoretical Biology, 2005
- Modelling disease outbreaks in realistic urban social networksNature, 2004
- Factors that make an infectious disease outbreak controllableProceedings of the National Academy of Sciences, 2004
- Monogamous networks and the spread of sexually transmitted diseasesMathematical Biosciences, 2004
- Geography in a scale-free network modelPhysical Review E, 2002
- More Realistic Models of Sexually Transmitted Disease Transmission DynamicsSexually Transmitted Diseases, 2000
- Modelling the persistence of measlesTrends in Microbiology, 1997
- On the critical behaviour of simple epidemicsProceedings Of The Royal Society B-Biological Sciences, 1997
- Correlation models for childhood epidemicsProceedings Of The Royal Society B-Biological Sciences, 1997
- Markov GraphsJournal of the American Statistical Association, 1986