Biological Treatment of a High Salinity Chemical Industrial Wastewater
- 1 April 1993
- journal article
- Published by IWA Publishing in Water Science & Technology
- Vol. 27 (7-8) , 105-112
- https://doi.org/10.2166/wst.1993.0540
Abstract
Various laboratory-scale process configurations were tested for the biological treatment of a combined wastewater stream of several chemical factories. The untreated wastewaters, rich in halogenated organics (1250±389 mg/l DOC), were also highly saline (32±11 g/liter TDS 550°C) and toxic (Microtox™ EC50 = 1.5±2.0%). Biphasic (anaerobic/aerobic) laboratory bench-scale reactor systems yielded reduction of dissolved organic carbon by 70 to 84%, in the absence and presence of powdered activated carbon, respectively. The anaerobic phase proved to be essential in all systems, both for dissolved organic carbon removal and for detoxification. Similar efficiencies were obtained in either activated sludge or aerated lagoon type reactors, but in the latter case, longer hydraulic retention times were required. DOC removal was found to decrease with increased salt concentration; however, a 50% efficiency was achieved even at 90 g/l TDS. Toxicity elimination as judged by the Microtox™ assay was highly variable in the absence of activated carbon but stable and efficient in its presence.Keywords
This publication has 0 references indexed in Scilit: