Canine blood volume and cardiovascular function during hyperthermia

Abstract
The effect of acute hyperthermia on hemodynamic functions and blood volume regulation was examined on eight splenectomized dogs. Elevation of core body temperature by 2 degrees C over 90 min caused significant increase in cardiac output (11.2 +/- 12.5 ml X min-1 X kg-1 or about 10%) and significant decrease in total peripheral resistance (TPR; -1.3 +/- 1.0 mmHg X s X ml-1 or about 20%), whereas blood volume (BV), plasma oncotic pressure, and intravascular protein mass remained unchanged. Thus the raised core temperature caused peripheral vasodilation with decreased TPR and compensatory increase in cardiac output. Because BV remained unchanged during warming, mobilization of extravascular fluid did not occur; only the redistribution of blood to the vasodilated cutaneous circulation took place. To assess the effects of heat stress on transvascular fluid equilibrium, Ringer solution (10.7 ml X kg-1 X 10 min-1) was infused under normothermic and hyperthermic conditions. The volume of fluid retained within the intravascular space under equilibrium state was 33.5% in hyperthermia and 9.4% in normothermia. In hyperthermia, the transvascular fluid shift and urinary output were decreased both during and after infusion. The role of preferential fluid retention within the intravascular space observed during hyperthermia was discussed in relation to the mechanism to maintain cardiovascular function and BV under heat stress.

This publication has 2 references indexed in Scilit: