Dendritic Na+ Current Inactivation Can Increase Cell Excitability By Delaying a Somatic Depolarizing Afterpotential

Abstract
Many central neurons support active dendritic spike backpropagation mediated by voltage-gated currents. Active spikes in dendrites have been shown capable of providing feedback to the soma to influence somatic excitability and firing dynamics through a depolarizing afterpotential (DAP). In pyramidal cells of the electrosensory lobe of weakly electric fish, Na+ spikes in dendrites undergo a frequency-dependent broadening that enhances the DAP to increase somatic firing frequency. We use a combination of dynamical analysis and electrophysiological recordings to demonstrate that spike broadening in dendrites is primarily caused by a cumulative inactivation of dendritic Na+ current. We further show that a reduction in dendritic Na+ current increases excitability by decreasing the interspike interval and promoting burst firing. This process arises when inactivation of dendritic Na+ current shifts the latency of the dendritic spike to delay the arrival of the DAP sufficiently to increase its impact on somatic membrane potential despite a reduction in dendritic excitability. Furthermore, the relationship between dendritic Na+ current density and somatic excitability is nonmonotonic, as intermediate levels of dendritic Na+ current exert the greatest excitatory influence. These results reveal that temporal shifts in dendritic spike firing provide a novel means for backpropagating spikes to influence the final output of a cell.