Nonlinear Resonance in Systems of Conservation Laws

Abstract
The Riemann problem for a general inhomogeneous system of conservation laws is solved in a neighborhood of a state at which one of the nonlinear waves in the problem takes on a zero speed. The inhomogeneity is modeled by a linearly degenerate field. The solution of the Riemann problem determines the nature of wave interactions, and thus the Riemann problem serves as a canonical form for nonlinear systems of conservation laws. Generic conditions on the fluxes are stated and it is proved that under these conditions, the solution of the Riemann problem exists, is unique, and has a fixed structure; this demonstrates that, in the above sense, resonant inhomogeneous systems generically have the same canonical form. The wave curves for these systems are only Lipschitz continuous in a neighborhood of the states where the wave speeds coincide, and so, in contrast to strictly hyperbolic systems, the implicit function theorem cannot be applied directly to obtain existence and uniqueness. Here we show that existence ...

This publication has 12 references indexed in Scilit: