Run probabilities and the motion of a particle on a given path

Abstract
Let {Xn} be a sequence of independent (or Markov dependent) trials taking values in a given set S. Let JR be a given path of length k in S, i.e. R is a run of length k whose elements come from S. {Xn} may indicate the motion of a particle on S. We consider the problem of finding the probability that at trial m, the particle has for the first time moved length lk on R which is equivalent to finding the probability of the first occurrence of any subrun of length lk of R. In the case of l = k this gives the result of Schwager [6].

This publication has 2 references indexed in Scilit: