Instability of standing waves for non-linear Schrödinger-type equations

Abstract
A theorem is proved giving a condition under which certain standing wave solutions of non-linear Schrödinger-type equations are linearly unstable. The eigenvalue equations for the linearized operator at the standing wave can be analysed by dynamical systems methods. A positive eigenvalue is then shown to exist by means of a shooting argument in the space of Lagrangian planes. The theorem is applied to a situation arising in optical waveguides.

This publication has 11 references indexed in Scilit: