Speckle motion artifact under tissue rotation

Abstract
Speckle patterns in ultrasound images may move in a way which bears no simple relationship to the motion of the corresponding tissues. In some instances the speckle motion replicates the underlying tissue motion, in others it does not. The authors name "speckle motion artifact" the difference between the speckle and the underlying tissue motion. An echographic image formation model is used to study the motion artifact produced by a rotating phantom and observed by a linear scan imaging system with a Gaussian beam. The authors propose that when the tissue is modeled as a random array of small and numerous scatterers, such motion aberration be accounted for by the 2D phase characteristics of the imaging system. An analytic prediction of this motion artifact in relation to the imaging system characteristics (beam width, transducer frequency, pulse duration) is presented. It is shown that the artifact results from the curvature of the system point spread function, which in turn determines the curvature of the 2D phase characteristics. To the authors' knowledge, it is the first time a comprehensive model of ultrasonic speckle motion artifact is presented. The model has been developed to study rotation-induced artifact; the method is however quite general and can be extended to study the effects of other tissue motion, in particular deformation and shear.<>