Effect of Stacking Layer Number on Mechanical Properties of Accumulative Roll Bonding Processed Aluminum
- 15 March 2004
- journal article
- Published by Trans Tech Publications, Ltd. in Materials Science Forum
- Vol. 449-452, 161-164
- https://doi.org/10.4028/www.scientific.net/msf.449-452.161
Abstract
Two and six-layer stack accumulative roll bonding (ARB) processes were applied to commercial purity aluminum in order to investigate the effect of the stacking layer number on the mechanical properties. The initial thickness of the aluminum sheets for two and six-layer stack ARB was 1mm and 0.5mm, respectively. Two-layer stack ARB was performed by 50% reduction per cycle. For six-layer stack ARB, the six aluminum sheets were first stacked together and cold-roll-bonded by 50% reduction rolling, and then followed by four-pass rolling so that the final thickness was 0.5mm. The sheet was then cut to the six pieces of same length and the same procedure was repeated to the sheets. The tensile strength of the ARB processed specimens increases with the number of ARB cycles in both two and six layer stack ARB. The tensile strength is lower by the six-layer stack ARB than that by the two-layer stack ARB. The elongation slightly decreases with the number of the ARB cycles, regardless of the stacking layer number. TEM observation reveals that the grain size of the six-layer stack ARB is larger than that of the two-layer stack ARB. The effects of the number of the layers in stacking are explained by the redundant shear deformation.Keywords
This publication has 11 references indexed in Scilit:
- Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealingScripta Materialia, 2002
- Development of the continuous shear deformation processProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2001
- Development of fine grained structures using severe plastic deformationMaterials Science and Technology, 2000
- Bulk nanostructured materials from severe plastic deformationProgress in Materials Science, 2000
- Materials processing by simple shearPublished by Elsevier ,2000
- Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) processPublished by Elsevier ,1999
- Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) processPublished by Elsevier ,1999
- Accumulative Roll-Bonding of 1100 AluminumJournal of the Japan Institute of Metals and Materials, 1999
- Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) processActa Materialia, 1999
- Formation of submicrometre-grained structure in magnesium alloy due to high plastic strainsJournal of Materials Science Letters, 1990