Abstract
Three kinds of experiments were carried out in a climatic chamber: experiments with warm load on the whole body at 36 degrees C (4 subjects); experiments at 36 degrees C with reduction of thermal load (28 degrees C) on the left leg (right leg at 36 degrees C) (8 subjects); and experiments at 36 degrees C with antisymmetric thermal load on the legs of 44 degrees C (right leg) and 28 degrees C (left leg), which resulted in additional thermal loads of +/- 30 W/leg (8 subjects). The additional thermal loads, which were applied via two climatic boxes, produced measurable effects on sweat rate when applied to one leg only. In comparison to the experiment 1, experiment 2 brought about a significant reduction of local evaporation on the left leg. With antisymmetric thermal loads on both legs (experiment 3), which did not influence the overall thermal balance, there was no significant influence on local evaporation, although significant changes of local temperatures were measured. It is suggested that the well-known regulatory models, declaring local, mean skin, and core temperatures as local evaporation drive should be supplemented with an important additional feature: local control of evaporation by local skin temperature may be blocked by an overall thermal balance.