Quantum Geometry and Thermal Radiation from Black Holes
Abstract
A quantum mechanical description of black hole states proposed recently within the approach known as loop quantum gravity is used to study the radiation spectrum of a Schwarzschild black hole. We assume the existence of a Hamiltonian operator causing transitions between different quantum states of the black hole and use Fermi's golden rule to find the emission line intensities. Under certain assumptions on the Hamiltonian we find that, although the emission spectrum consists of distinct lines, the curve enveloping the spectrum is close to the Planck thermal distribution with temperature given by the thermodynamical temperature of the black hole as defined by the derivative of the entropy with respect to the black hole mass. We discuss possible implications of this result for the issue of the Immirzi gamma-ambiguity in loop quantum gravity.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: