Abstract
The proximal subgradient formula is a refinement due to Rockafellar of Clarke's fundamental proximal normal formula. It expresses Clarke's generalized gradient of a lower semicontinuous function in terms of analytically simpler proximal subgradients. We use the infinite-dimensional proximal normal formula recently given by Borwein and Strojwas to derive a new version of the proximal subgradient formula in a reflexive Banach space X with Frechet differentiable and locally uniformly convex norm. Our result improves on the one given by Borwein and Strojwas by referring only to the given norm on X.

This publication has 4 references indexed in Scilit: