Imaging nanometer-thick patterned self-assembled monolayers via second-harmonic generation microscopy

Abstract
We have used the inherent surface sensitivity of second-harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. This optical technique is ideal for imaging nanometer-thick, chromophoric self-assembled monolayers (SAMs), which have been patterned using photolithographic techniques. In this paper, we demonstrate the application of second-harmonic generation microscopy to patterned SAMs of the noncentrosymmetric molecule calixarene and discuss the resolution and sensitivity limits of the technique.