Plasmin-dependent and -independent effects of plasminogen activators and inhibitor-1 on ex vivo angiogenesis

Abstract
Plasminogen activator (PA) inhibitor-1 (PAI-1) has been recognized as a surrogate marker of endothelial dysfunction in diseases associated with impaired angiogenesis, including atherosclerosis, diabetic vasculopathy, and nephropathy. To establish the necessary and sufficient components of the PA system [PAI-1, urokinase-type PA (uPA), or tissue-type PA (tPA), and plasminogen (Plg)] for angiogenesis, we examined angiogenic competence of vascular explant cultures obtained from mice deficient in PAI-1, tPA, uPA, and Plg. To gain insight into the requirement for different matrix-degrading systems during endothelial cell migration across plasmin-degradable basement membranes compared with profibrotic areas containing plasmin-nondegradable collagen, we contrasted vascular sprouting in collagen with Matrigel lattices. PAI-1−/−vessels showed an increased capillary sprouting in both collagen and Matrigel. Deficiency of uPA significantly reduced the rate of sprouting, whereas tPA−/− vessels showed a profound inhibition of capillary sprouting. The Plg−/− vessels failed to sprout, a defect that was restored not only by exogenous Plg, but also by the addition of PAs; a nonproteolytic effect of tPA was observed in Matrigel. Zymography revealed no differences in the activity of metalloproteinase (MMP)-2 and -9 in wild-type and PAI-1−/− vessels, but demonstrated reduced MMP-9 activity in all angiogenesis-deficient vessels. In summary, 1) PAI-1 by itself is a modest inhibitor of endothelial sprouting, 2) tPA and Plg are indispensable for angiogenesis in this model,3) Plg is not the only substrate for PAs, and 4) the activity of MMP-9 is undetectable in explant cultures from tPA and Plg knockout mice.