Abstract
Numerical simulations are conducted to examine the role played by different amplification mechanisms in the development of large-amplitude mountain waves. It is shown that when the static stability has a two-layer structure, the nonlinear response can differ significantly from the solution to the equivalent linear problem when the parameter Nh/U is as small as 0.3. In the cases where the nonlinear waves are much larger than their linear counterparts, the highest stability is found in the lower layer and the flow resembles a hydraulic jump. Simulations of the 11 January 1972 Boulder windstorm are presented which suggest that the transition to supercritical flow, forced by the presence of a low-level inversion, plays an essential role in triggering the windstorm. The similarities between breaking waves and nonbreaking waves which undergo a transition to supercritical flow are discussed. Abstract Numerical simulations are conducted to examine the role played by different amplification mechanisms in the development of large-amplitude mountain waves. It is shown that when the static stability has a two-layer structure, the nonlinear response can differ significantly from the solution to the equivalent linear problem when the parameter Nh/U is as small as 0.3. In the cases where the nonlinear waves are much larger than their linear counterparts, the highest stability is found in the lower layer and the flow resembles a hydraulic jump. Simulations of the 11 January 1972 Boulder windstorm are presented which suggest that the transition to supercritical flow, forced by the presence of a low-level inversion, plays an essential role in triggering the windstorm. The similarities between breaking waves and nonbreaking waves which undergo a transition to supercritical flow are discussed.

This publication has 0 references indexed in Scilit: