High-Resolution MALDI Fourier Transform Mass Spectrometry of Oligonucleotides

Abstract
The matrix-assisted laser desorption/ionization (MALDI) method has been used with an external ion source Fourier transform mass spectrometer (FTMS) to analyze single-stranded, mixed-base oligomers of DNA. It is demonstrated that ultrahigh mass resolution (830 000 fwhm) can be achieved for small oligomers, and high resolution (136 000 fwhm) can be achieved for a 25-mer at m/z 7634. MALDI-FTMS can clearly separate the molecular ion peaks from analyte−matrix adduct peaks and alkali metal-containing species that result from replacement of hydrogen ions with sodium or potassium ions at multiple sites along the phosphate backbone. Previous MALDI-FTMS studies of oligonucleotides had two limitations: (1) low sensitivity due to difficulty in trapping the high kinetic energy ions made by the laser and (2) fragmentation of the ions due to the long delay (tens to hundreds of milliseconds) between their formation and detection. Both of these problems are alleviated in the present study. With the external ion source FTMS instrument, ions made by MALDI are injected at low energy into the analyzer cell by a rf-only quadrupole ion guide, captured by gating the voltage on the trapping plates, and cooled by a 0.5-s pulse of argon gas. Under these conditions, fragmentation is minimized, and DNA ions can be trapped in the FTMS analyzer cell for greater than 50 s. Sensitivity is also improved, as demonstrated by detection of 1 pmol of a single-stranded, mixed-base 20-mer of DNA, with a signal-to-noise ratio greater than 20:1.

This publication has 26 references indexed in Scilit: