The Zinc Finger Domain of NEMO Is Selectively Required for NF-κB Activation by UV Radiation and Topoisomerase Inhibitors
- 1 August 2002
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 22 (16) , 5813-25
- https://doi.org/10.1128/mcb.22.16.5813-5825.2002
Abstract
Exposure of mammalian cells to UV radiation was proposed to stimulate the transcription factor NF-kappa B by a unique mechanism. Typically, rapid and strong inducers of NF-kappa B, such as tumor necrosis factor alpha (TNF-alpha) and bacterial lipopolysaccharide (LPS), lead to rapid phosphorylation and proteasomal degradation of its inhibitory protein, I kappa B alpha. In contrast, UV, a relatively slower and weaker inducer of NF-kappa B, was suggested not to require phosphorylation of I kappa B alpha for its targeted degradation by the proteasome. We now provide evidence to account for this peculiar degradation process of I kappa B alpha. The phospho-I kappa B alpha generated by UV is only detectable by expressing a Delta F-box mutant of the ubiquitin ligase beta-TrCP, which serves as a specific substrate trap for serine 32 and 36 phosphorylated I kappa B alpha. In agreement with this finding, we also find that the I kappa B kinase (IKK) phospho-acceptor sites on I kappa B alpha, core components of the IKK signalsome, and IKK catalytic activity are all required for UV signaling. Furthermore, deletion and point mutation analyses reveal that both the amino-terminal IKK-binding and the carboxy-terminal putative zinc finger domains of NEMO (IKK gamma) are critical for UV-induced NF-kappa B activation. Interestingly, the zinc finger domain is also required for NF-kappa B activation by two other slow and weak inducers, camptothecin and etoposide. In contrast, the zinc finger module is largely dispensable for NF-kappa B activation by the rapid and strong inducers LPS and TNF-alpha. Thus, we suggest that the zinc finger domain of NEMO likely represents a point of convergence for signaling pathways initiated by slow and weak NF-kappa B-activating conditions.Keywords
This publication has 51 references indexed in Scilit:
- IκBβ, but Not IκBα, Functions as a Classical Cytoplasmic Inhibitor of NF-κB Dimers by Masking Both NF-κB Nuclear Localization Sequences in Resting CellsJournal of Biological Chemistry, 2001
- IκB Family Members Function by Different MechanismsJournal of Biological Chemistry, 2001
- IκBα and IκBα/NF-κB Complexes Are Retained in the Cytoplasm through Interaction with a Novel Partner, RasGAP SH3-binding Protein 2Journal of Biological Chemistry, 2000
- NEMO/IKKγ-Deficient Mice Model Incontinentia PigmentiMolecular Cell, 2000
- Positive and Negative Regulation of IκB Kinase Activity Through IKKβ Subunit PhosphorylationScience, 1999
- IκBα Ubiquitination Is Catalyzed by an SCF-like Complex Containing Skp1, Cullin-1, and Two F-Box/WD40-Repeat Proteins, βTrCP1 and βTrCP2Biochemical and Biophysical Research Communications, 1999
- The SCFbeta -TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in Ikappa Balpha and beta -catenin and stimulates Ikappa Balpha ubiquitination in vitroGenes & Development, 1999
- Rapid dephosphorylation of p107 following UV irradiationOncogene, 1999
- NF-κB AND REL PROTEINS: Evolutionarily Conserved Mediators of Immune ResponsesAnnual Review of Immunology, 1998
- Novel Inhibitors of Cytokine-induced IκBα Phosphorylation and Endothelial Cell Adhesion Molecule Expression Show Anti-inflammatory Effects in VivoJournal of Biological Chemistry, 1997