Kinetics of intrachain reactions of supercoiled DNA: Theory and numerical modeling
- 15 March 2001
- journal article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 114 (11) , 5049-5060
- https://doi.org/10.1063/1.1350579
Abstract
We considered an irreversible biochemical intrachain reaction of supercoiled DNA as a random event that occurs, with some probability, at the instant of collision between two reactive groups attached to distant sites of the DNA molecule. For sufficiently small intrinsic rate constant kI, the dominant process contributing to the productive collisions is the quasione-dimensional reptation of the strands forming the superhelix. The mean reaction time is then given by τF+1/kIcL, where τF is the mean time of the first collision caused by reptation, and cL is the local concentration of one reactive group around the other. The internal reptation of DNA strands was simulated by the repton model, in which a superhelix branch is approximated by a string of beads placed in a row of cells. This simple model allows semiquantitative estimation of τF and cL (in some arbitrary units) for a large range of the DNA lengths L. The repton chain was calibrated with the help of the data available for small supercoiled plasmids from Monte Carlo and Brownian dynamics simulations. The repton model and the Brownian dynamics give the same form of the distribution of the first collision time. Our estimations show that, for opposite sites of the chain, the mean first collision time τF varies from 5 ms (L=2.5 kb) to 1 s (L=20 kb). The corresponding cL values (for the reaction radius 10 nm) are 3×10−6 and 2×10−7 M.Keywords
This publication has 30 references indexed in Scilit:
- Action at a distance: DNA-looping and initiation of transcriptionPublished by Elsevier ,2000
- Modeling Dynamic Light Scattering of Supercoiled DNAMacromolecules, 2000
- Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtapositionJournal of Molecular Biology, 1998
- Effect of supercoiling on the juxtaposition and relative orientation of DNA sitesBiophysical Journal, 1996
- Dynamics of a Ring Polymer in a GelPhysical Review Letters, 1994
- Conformational and thermodynamic properties of supercoiled DNAJournal of Molecular Biology, 1992
- Intramolecular diffusion-controlled reactions in polymers in the optimized Rouse-Zimm approach. 1. The effects of chain stiffness, reactive site positions and site numbersMacromolecules, 1990
- Theory of intrachain reaction rates in entangled polymer systemsMacromolecules, 1984
- Diffusion‐controlled protein–DNA association: Influence of segemental diffusion of the DNABiopolymers, 1984
- Diffusion-controlled intrachain reactions of polymers. II Results for a pair of terminal reactive groupsThe Journal of Chemical Physics, 1974