Standard-Model Bundles on Non-Simply Connected Calabi--Yau Threefolds

Abstract
We give a proof of the existence of $G=SU(5)$, stable holomorphic vector bundles on elliptically fibered Calabi--Yau threefolds with fundamental group $\bbz_2$. The bundles we construct have Euler characteristic 3 and an anomaly that can be absorbed by M-theory five-branes. Such bundles provide the basis for constructing the standard model in heterotic M-theory. They are also applicable to vacua of the weakly coupled heterotic string. We explicitly present a class of three family models with gauge group $SU(3)_C\times SU(2)_L\times U(1)_Y$.

This publication has 0 references indexed in Scilit: