Abstract
X-ray diffraction (XRD) patterns of a pore-lining diagenetic chlorite (14 Å) from a reservoir sandstone, offshore Norway, show broad odd-order and sharp even-order basal reflections indicating that it contains 7 Å layers. Using NEWMOD, simulated XRD patterns with 15% 7 Å serpentine layers and a maximum crystallite thickness of 30 layers match the natural mineral well. Microprobe analyses of the 7 Å-14 Å mineral indicate that it is Fe-rich and aluminous suggesting that it is interstratified berthierine-chamosite. Apparent octahedral vacancies, however, suggest a significant dioctahedral component, and an alternative interpretation is interstratified kaolinite-chlorite. Indeed, chemical analyses of the mineral suggest a mixture of chlorite with 15% kaolinite, precisely the proportion of 7 Å layers indicated by XRD. Two other examples from the literature, previously identified as diagenetic chlorite, are probably also 7 Å-14 Å interstratified minerals, and the proportion of 7 Å layers indicated by XRD is also correlated with their structural formulae, if the 7 Å layers are, in fact, kaolinitic. This type of interstratification could explain why Fe-rich diagenetic chlorites appear to be compositionally distinct from metamorphic chlorites. The structure and chemistry of the Norwegian chlorite tend to support the idea that pore-lining chlorites form early in the diagenetic history, inhibiting the precipitation of later diagenetic minerals, and hence preserving abnormally high porosity at greater depths.