Abstract
We prove general forms of von Staudt's theorems on the Bernoulli numbers. As a consequence we are able to deduce strong versions of a number of congruences involving various generalisations of the Bernoulli numbers. For example we obtain an improved form of a congruence due to Hurwitz involving the Laurent series coefficients of the Weierstrass elliptic function associated with a square lattice.

This publication has 9 references indexed in Scilit: