Effect of Several Cations on Transmembrane Potentials of Cardiac Muscle

Abstract
The effects of changes in the extracellular concentrations of Ca, K and Mg on the transmembrane resting and action potentials of single fibers of the auricle, ventricle and specialized conducting system of the dog heart have been studied by means of intracellular microelectrodes. With respect to Ca, the three tissues exhibit quite different sensitivities. Changes in concentration of this ion alter the time course of the action potential recorded from auricle and ventricle but have little effect on the action potential configuration of the Purkinje fiber. In the latter tissue, on the other hand, pacemaker activity is most strongly enhanced by Ca depletion and excitability is lost at Ca concentrations permitting normal propagation in papillary muscle. The effect of K on the resting transmembrane potential is dependent on the simultaneous Ca concentration. The interrelationship is such that the depolarizing effect of high K is decreased by elevated Ca and the depolarization produced by low K is diminished by low levels of Ca. Changes in the concentration of Mg have little effect on the transmembrane potentials of cardiac muscle unless the level of Ca is low. Under this condition a simultaneous decrease in Mg gives rise to a marked prolongation of the action potential duration of both auricle and ventricle. Some evidence for the basic similarity of the processes underlying repolarization in these three tissues is presented and it is thought the normally encountered differences in their action potentials may be related to the sensitivity of each tissue to extracellular Ca.

This publication has 0 references indexed in Scilit: